C. U. SHAH UNIVERSITY **Summer Examination-2018**

Subject Name: Industrial Tribology

	Subject	Code: 4TE07ITR1	Branch: B.Tech (Mechanical)		
	Semester	r: 7 Date: 02/04/201	8 Time: 10:30 To 01:30 Marks:	70	
	Instructio	ons:			
	(1)	Use of Programmable calculat	or & any other electronic instrument is prohibited.		
	(2) 1	Instructions written on main a	nswer book are strictly to be obeyed.		
	(3)]	Draw neat diagrams and figure	es (if necessary) at right places.		
	(4)	Assume suitable data if needed	l.		
0-1		Attempt the following ques	stions:		
χ-	a)	Define average roughness W	Vrite its unit.	01	
	b)	Draw the diagram for viscos	ity vs. pressure and explain in brief.	01	
	c)	Define wear by two differen	t ways	01	
	() d)	Give the name of any two so	lid lubricants	01	
	e)	As per Archard's wear equat	tion, wear volume in adhesive wear is independent of	01	
	f)	Give names of any two visco	 ometers.	01	
	g)	By considering tribological a	aspects give your comments on smooth and rough	01	
	b)	Write the unit of absolute on	d kinamatia visaasity	01	
	11) i)	Write the significant two dif	the foreness between journal and anti-friction bearing	01	
	1) i)	Write any two lubricants use	d in rolling process	01	
	J/ k)	With past sketch show surfa	ce lavers	01	
	к <i>)</i> 1)	Explain the importance of co	being with respect to tribology	01	
	1) m)	What is PHD lubrication?	ating with respect to thoology.	01	
	n)	When the bearing is subjected	ed to large fluctuations of load and heavy impact the	01	
	11)	keering a share staristic number	the basis modulus	UI	
• • •		bearing characteristic number	r should be the bearing modulus.		
Atte	mpt any	four questions from Q-2 to Q	2-8		
Q-2		Attempt all questions		~-	
	(a)	List different theories of frid	ction. Explain one of them which justifies or explain	07	
		friction in better manner.		~-	
	(b)	Explain Viscosity Index in d	etails.	07	
Q-3		Attempt all questions			
-	(a)	List & explain different type	es of wear. How would you reduce or eliminate wear	07	
		from industrial machinery at	the design stage?		
	(b)	State and explain laws of we	ar.	07	
Q-4		Attempt all questions			
	(a)	Give the role of Additives i	n lubricants. Also explain various types of additives	07	

generally used according to their functions.

(b) Explain the EHD (elasto hydrodynamic) lubrication in detail. State different 07 examples of it.

Q-5 Attempt all questions

- (a) State the assumptions made while deriving,
 - 1. Petroff's equation and
 - 2. Reynold's equation
 - for hydrodynamic journal bearing.
 - (b) Derive Petroff's equation for hydrodynamic journal bearing.

Q-6 Attempt all questions

- (a) A full journal bearing is rotating at 1200 rpm, and supporting a load of 6.5 kN.
 07 The shaft diameter is 60 mm and bearing diameter is 60.09 mm. l/d ratio is 1. If a minimum film thickness of 0.009 mm is to be maintained, find
 - 1. required viscosity of oil,
 - 2. amount of oil flow rate through the bearing,
 - 3. power lost in friction,
 - 4. temperature rise in oil.

ε	$\frac{h_o}{c_r}$	s	φ	$\frac{r}{c_r}f$	$\frac{q}{rc_rn_sL}$	$\frac{q_s}{q}$	<u>γ.c∆t</u> 。 P	p p _{max}
0.6	0.4	0.121	50.58	3.22	4.33	0.680	14.2	0.415
0.8	0.2	0.0446	36.24	1.70	4.62	0.842	8.00	0.313
0.9	0.1	0.0188	26.45	1.05	4.74	0.919	5.16	0.247

(b) Derive the Reynold's equation in two dimensional flows for hydrodynamic 07 lubrication.

Q-7 Attempt all questions

×.		F·				
	(a)	Explain following terms with respect to Hydrodynamic journal bearing				
		1. Long bearing				
		2. Eccentricity				
		3. Minimum film thickness				
		4. Attitude				
		5. Critical pressure				
	(b)	State and explain the desirable properties of bearing materials.	07			
Q-8		Attempt all questions				
	(a)	What is hydrostatic step bearing? Derive equation for load carrying capacity of	07			
		hydrostatic step bearing.				
	(b)	Give differences between hydrodynamic and hydrostatic journal bearing.	07			

07

07